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ABSTRACT

The transportation system in the United States is disjointed and inefficient as a result of the
different transportation modes in use and their respective industries which have developed
independently. In addition, public transportation is not well used in passenger trips compared to
other developed countries. For example, public transportation accounts for 20% of passenger trips
in large U.S. cities compared to 50% in Europe. Also, development of the passenger intermodal
transportation system has lagged behind development of the freight transportation system.

To improve utilization of intermodal transit and efficiency in the U.S, we developed an
intelligent decision support system for passenger travel decisions using real-time general transit
feed specifications (GTFS) data. In our system, an automatic data collection strategy was created
to collect GTFS and flight data across different platforms, and an “all-in-one” database was
designed to store the data. The database was used to: 1) construct intermodal transit networks using
a “node-link” scheme, and 2) estimate travel time and travel time reliability for links and transit
routes. Using this real-time data, a data-driven travel decision model was developed to determine
the best route based on passenger preferences. Several chance constraints were added in the
decision model to guarantee the reliability of the travel route under uncertainties. Additionally, a
user-friendly interface was developed in Python to allow travelers to plan their trips, and a
geographic information system (GIS), Google Earth, was employed to allow users to visualize the
optimized route options.

The proposed system was validated using real-time GTFS data collected in Tucson, AZ, and
Boston, MA. This validation demonstrated that the system can determine optimal travel routes for
passengers. In addition, three sets of sensitivity analysis experiments were developed to investigate
three model considerations: 1) the effect of chance constraints on path choice, 2) the effect of
confidence levels on path choice, and 3) the difference between weekend and weekday travel
planning. The results suggested that the optimal anticipated travel time increases with an
increasing on-time arrival confidence level, and walking is preferred by passengers instead of
transferring buses during peak hours. As an example, approximately 30% additional time serves
as a reference for allocating travel buffer time to ensure a higher on-time arrival confidence level

for transit trips to the Tucson International Airport.
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1. INTRODUTION

Travelers across the country have been encouraged to switch travel modes from private
vehicles to public transportation. A decrease in vehicle traffic can lead to carbon emission
reductions and alleviation of traffic congestion. Transit service improvements including accessible
stops, reliable trips, and mobility provisions provide travelers with incentive to switch to transit
[1]. In addition to the development and maintenance of transit facilities, emerging transportation
management information technologies have also been developed. Many transit agencies in the U.S.
and Canada have adopted these technologies and created advanced public transportation systems
(APTS) to improve their operational efficiency and service safety [2,3]. Therefore, transit systems
are increasingly playing an important role in surface transportation.

One of the primary goals of transit operation is to increase ridership. Transit agencies have
utilized APTS to release up-to-date transit information (e.g. changes in routes or timetables). A
recent survey [4] suggested that the overall satisfaction and usability of transit systems would be
improved by providing passengers with up-to-date transit information. Moreover, this information
could also help transit passengers plan their trips to save travel time and expenses. Related trip
planning applications can be found in [5—7]. The benefit of releasing up-to-date transit information
is dependent on the quality of data collection. Conventional transit data collection approaches
primarily include manual collection at pre-defined points (e.g. bus transfers and terminals) and
transit-related surveys. Additionally, various technologies have been applied to automatically
collect transit data. One of these technologies is GPS, which assists transit agencies and passengers
in tracking and locating transit fleets in real-time. The ease of transit data collection using GPS
ensures that transit information is up-to-date, simplifies the trip planning process, and makes
planned trips reliable.

Reliable trip planning has been studied with the objective of saving transit passengers travel
time and cost. Most transit agencies have developed their own trip planning systems for their riders.
For example, Sun Tran [8] has developed a trip planning system based on its scheduled trips in
Tucson, Arizona. Another trip planning framework is OneBusAway, [9] which integrates transit
networks and schedule information in five cities. Although these trip planning systems can be
easily accessed using webpages or apps on mobile devices, few academic studies have addressed
their trip planning algorithms and models. Yan et al. [10] sought to minimize the expected values

of random schedule deviations (specifically the sum of expected values), and their results showed



that optimal scheduled travel time depends on bus drivers’ schedule recovery behavior and
decision makers’ scheduling philosophies. In order to minimize wait times at transfer stations,
Shafahi and Khani [11] formulated the issue of transit trip planning as a mixed integer
programming model and presented a genetic algorithm approach to more efficiently find optimal
transit trips in larger networks.

Beyond transit trip planning, several previous studies on general transportation trip planning
are also summarized below. Travel time is one of the most important criteria when planning a trip.
Travelers are commonly concerned with how long will their trip take. Thus, travel time is an
essential factor for finding optimal trip paths. Recent studies [12—14] also suggested that travel
time reliability (also known as travel time uncertainties) could be considered as “risks” of late
arrival, because late arrivals caused by travel time variations would excessively inconvenience
travelers (e.g., missed flights). Thus, travelers would desire to know how reliable their planned trip
path would be. For example, airline passengers appear to depart early to create a “safe margin” to
minimize the chance of missing their flight. This safe margin is usually called buffer time.
Appropriate buffer time for different traveler routes could be provided to support better trip
decisions depending on the departure time period on a specific day. Therefore, both travel time

and travel time reliability are essential factors for trip planning.



2. OBJECTIVE

The main research goals of this project are to improve the efficiency of intermodal passenger
transportation, improve the utilization of public transportation modes, and reduce transportation

cost and travel time for passengers.
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3. SCOPE

To attain the objectives listed above, an efficient and effective database was designed to
provide an “all-in-one” data platform for storing static and dynamic information of different
transportation modes (e.g., bus, flight, etc.). An automatic data collection approach was developed
to collect real-time data and store it in the database.

Next, to help passengers reliably arrive at the airport on-time, both bus transit measures (travel
time and travel time reliability) were incorporated in the proposed chance constrained decision
model to obtain optimal paths at a predefined on-time arrival confidence level.

Finally, based on the database and the travel decision model, a user-friendly interface was
developed to allow passengers to search for and schedule their travel plans. To visualize the

optimized route options, Google Earth was used to display different routes.
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4. METHODOLOGY

4.1Data Collection
4.1.1 GTFS Data

The transit data followed the general transit feed specification (GTFS) format and was reported

to Google in two types: GTFS static and GTFS real-time, with definitions and applications of each

shown below.

“The GTFS defines a common format for public transportation schedules and associated
geographic information” [15]. GTFS has several fields, including “stop time”, which refers
to transit scheduled timetable, “route”, “trip”, and “stops”, which contain the existing
transit facility information. These fields are necessary to calculate the earliness/lateness of
buses at stops. The field “shapes” provides the spatial references to locate transit fleet on
roadways. Time-space diagrams can be plotted using the travelled mileages transformed
from the real-time transit fleet locations.

“GTFS real-time is a feed specification that allows public transportation agencies to
provide real-time updates about their fleet to application developers. It is an extension
to GTFS, an open data format for public transportation schedules and associated
geographic information” [16]. It provides not only transit fleet information but also
estimated trip status. Because this study aimed to measure reliability at the stop-level, only

the real-time transit fleet locations contained in the field “VehiclePosition” were used. The

update frequency of the GTFS real-time data was 30 seconds.

Figure 1 depicts the GTFS data flow where GTFS static and GTFS real-time can be accessed

by different approaches. Transit agencies usually implement and release GTFS static data files on

static webpages. Anyone can directly download these files from the webpages. GTFS real-time

data is updated at a specific time interval and released through web service definition language

(WSDL) technology. Users usually have to develop computer programs to grab the real-time data.

Since GTFS real-time is encrypted with “protocol buffer” [17], GTFS real-time data should be

decrypted before further processing. After downloading and grabbing the GTFS static and GTFS

real-time data files, a customized computer program is developed to parse these files and import

the parsed data into a database. Figure 2 lists the attributes in GTFS real-time data.
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4.1.2 Transit Agency Data

Transit service data assists transit agencies in making decisions with respect to transit
operations and planning. Manually collecting transit service data has been a popular approach in
the past several decades. Recently, emerging techniques have allowed decision makers and
researchers to automatically collect transit service information. For instance, GPS is able to locate
transit fleets in real-time. The automated vehicle location (AVL) system is built based on GPS.
The transit service data collected from the AVL system contains not only fleet location information
but also travel-related information (e.g. trip, route, and bus stop arrival time). However, specific
transit agencies may define AVL data formats to satisfy their operation and planning requirements,
without adhering to a common format. Google encourages transit agencies to follow the data
format defined in GTFS to exchange and share transit service information. GTFS data is becoming
more popular throughout the nation.

Figure 3 shows an overview of bus stops in Tucson, Arizona. This data was used to build a
network for trip planning and path choice. The real-time transit fleet information was encrypted in
the GTFS real-time format. Sun Tran, which manages transit service (including over 30 routes and
over 2,000 bus stops) in Tucson, AZ, has implemented the two GTFS data formats and made them
accessible to the public. Both types of GTFS data were collected from August 2014 to June 2015
and used in our study.

Two commonly used transit service measures were estimated using the GTFS data, including
the mean value of link travel time (also known as stop-to-stop travel time) and transit service
reliability. Transit service reliability is defined as the variance of link travel time. Travel time
reliability is typically measured by time of day (TOD) and day of week (DOW) [18]. Sun Tran
adopted two timetables (one for weekdays and one for weekends) because of the significant
differences in transit demand between weekdays and weekends. Therefore, the transit service
reliability is measured by TOD and weekdays or weekends. A dummy variable w is used to

indicate either weekdays or weekends.

K

1
td td

TTmi” = % E Tt €y

k=1
1 v 2
mrmptodw d, d,
TTR ﬁfnw K Z rtngllzv_ T:r?lw) (2)

where TT and TTR are average and variance of link travel time given rn, [, tod, and w;
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rn represents the route number;
[ represents the /th link on Route rn;
w is 0 and 1 for weekends and weekdays, respectively.

k is the k™ estimated link travel time given rn, [, tod, and w;
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FIGURE 3 Bus stops and transit network in Tucson
(Background image is from the OpenStreetMap)

4.2Database Schema

According to the attributes of GTFS static and GTFS real-time, Figure 4 shows the database
schema design. GTFS static data includes trip, route, stop&time, stop, and shape information. The
primary keys are labeled in tables. All tables are connected by primary keys. For example, a trip
is connected with the primary keys route ID and shape ID in Route and Shape tables, respectively.

Figures 5-6 give examples of tables in database.
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FIGURE 4 Database schema design

route_id | agency_id | route_short_name I route_long_name

I route_desc | route_type | route_url

I route_color | route_text_color I -

1 | 11670 : SunTran 1
2 | 11617 SunTran 10
3| 1818 SunTran 101X
4 | 1813 SunTran 102X
5 | 11620 SunTran 103X
6| ne21 SunTran 104X
| 7| 11622 SunTran 108X
8 | 11623 SunTran 107X
9 | 11624 SunTran 108X
10 | 11625 SunTran 109X
(11 | 11626 SunTran 11
12 | 11627 SunTran 110K
13 | 11628 SunTran 15
14 | 11623 SunTran 16
|15 | 11671 SunTran 17
16 | 11831 SunTran 19
17 | 11832 SunTran 2

Glenn/Swan

Flowing Wells

Golf Links-Downtown Express
Northwest-UA Express
Northwest-Downtown Express
Marana-Downtown Express
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NULL 3
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http:#/suntran.com/pdf/routes/AUG_14_rt_104X.pdf
http://suntran.com/pdf/routes/AUG_14_rt_105< pdf
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(a) Route table
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(b) Shape table
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FFD457 000000
00703C FFFFFF
003878 FFFFFF
C59134 FFFFFF
957C40 FFFFFF
451F03 FFFFFF
E00085 FFFFFF
5B5746 FFFFFF
DAIB3C FFFFFF
4D448D FFFFFF
7C5C36 FFFFFF
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52BCCE FFFFFF
00C200 FFFFFF
C44445 FFFFFF



route_id | service_id I trip_id I trip_headsign

I trip_short_name

| direction_id | block_id | shape_id Ig

1_fne7 ¢ 2
2 | ne17 2
3 | ne7 2
4 | ne17 2
5 | e17 2
6 | ne17 2
7 | ne7 2
8 | 117 2
9 | ne7 2
10 | 1117 2
1| net7 2
12 | g7 2
13 | 11817 2
14 | 1117 2
15 | 11617 2
16 | 11817 2
17 | 11617 2
18 | 11e17 2
19 | 11617 2
20 | ne17 2
21 | net7 2

1168320 TOHONO CENTER
1168921  TOHONO CENTER
1168322 TOHONO CENTER
1168923 TOHONO CENTER
1168924 TOHONO CENTER
1168325 TOHONO CENTER
1168926  TOHONO CENTER
1168327 TOHONO CENTER
1168928 TOHONO CENTER
1168323 TOHONO CENTER
1168330 TOHONO CENTER
1168331  TOHONO CENTER
1168932  TOHONO CENTER
1168333  TOHONO CENTER

1168347  DOWNTOWN
1168334  DOWNTOWN
1168935 DOWNTOWN
1168336 DOWNTOWN
1168337  DOWNTOWN
1168338  DOWNTOWN
1168333 DOWNTOWN

(e) Trips
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NULL
NULL
NULL
NULL
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381125
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FIGURE 5 Parsed GTFS static data in database
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35916
35916
35916
35916
35916
35916
35916
35916
35916
35916
35916
35916
35916
35916
35917
35917
35917
35917
35917
35917
35917

[ |

trip_id arrival_time I departure_time I stop_id I stop_sequence I stop_headsign I pickup_type I drop_off_type I shape_dist_traveled I i’
1 170717 § 1970-01-01 20:24:47.000  1970-01-01 20:24:47.000 10874 16 0 0 6.6001
(2| 170717 1970-01-01 20:25:52.000  1970-01-01 20:25:52.000 14363 17 0 0 6.8933
(3| 170717 1970-01-01 20:27:03.000  1970-01-01 20:27:03.000 10875 18 0 0 7.2144
4 | M70N7 1570-01-01 20:28:00.000  1970-01-01 20:28:00.000 10876 19 0 0 7.4454
5_[ 170717 1970-01-01 20:23:04.000  1970-01-01 20:25:04.000 10877 20 0 0 7.9465
(6| 1170717 1570-01-01 20:23:26.000  1970-01-01 20:23:26.000 10878 21 0 0 8.1205
7| 170717 1970-01-01 20:23:47.000  1970-01-01 20:23:47.000 10873 22 0 0 8.2915
(8 | 1170717 1970-01-01 20:30:21.000  1970-01-01 20:30:21.000 10880 23 0 0 8.5626
(9 | 170717 1970-01-01 20:31:15.000  1970-01-01 20:31:15.000 10881 24 0 0 89859
10| 1170717 1970-01-01 20:31:39.000  1970-01-01 20:31:33.000 10882 25 0 0 91742
11 | 1170717 1970-01-01 20:3212.000  1970-01-01 20:3212.000 10883 26 0 0 9.4336
L‘ 170717 1970-01-01 20:32:37.000  1970-01-01 20:32:37.000 10884 27 0 0 9.6342
(13 | 1170717 1970-01-01 20:33:05.000  1970-01-01 20:33:05.000 10885 28 0 0 9.8569
(14 | 1170717 1970-01-01 20:33:35.000  1970-01-01 20:33:35.000 10886 29 0 0 10.0938
(15 | 1170717 1970-01-01 20:33:56.000  1970-01-01 20:33:56.000 10887 30 0 0 10.2582
16 | 1170717 1970-01-01 20:35:11.000  1970-01-01 20:35:11.000 14415 31 0 0 10.8446
17 | 1170717 1970-01-01 20:35:37.000  1970-01-01 20:35:37.000 14957 32 0 0 11.0547 LI
(c) Stop & time table
‘slop_id I stop_code I stop_name. l stop_desc I stop_lat I stop_lon I zone_id l stop_url I location_type I parent_station I wheelchair_boarding Ig
13 NULL Park/Speedway N PARK AVE &E SPEEDWAY BLVD 32236753 -110.956885 NULL  NULL  NULL NULL 0
2 |4 NULL Glenn/Campbell E GLENN ST & N CAMPBELL &V 32257543 -110.943543  NULL NULL NULL NULL 0
3 |5 NULL Glenn/alvernan EGLENN ST &N ALVERNON WaAY 32257785 -110.909233 NULL  NULL  NULL NULL 0
4 |8 NULL Glenn/alvemon E GLENN ST & N HASKELL DR 32257945 -110.910127  NULL NULL NULL NULL 0
N NULL Glenn/Campbell E GLENN ST & N CAMPBELL &V 32257615 -110.943542  NULL NULL NULL NULL 0
6 |14 NULL Forgeus/36th St S FORGEUS STRAV & E 36TH ST 32192682  -110.935772  NULL NULL NULL NULL 0
7 |18 NULL UAMC/South Campus UAMC KINO 3217683 110930741  NULL NULL NULL NULL 0
8 |2 NULL Escalante/Pantano EESCALANTE RD &S PANTANORD 3217723 -110.823121  NULL NULL NULL NULL 0
9 | NULL Stella/Kolb E STELLARD &S KOLE RD 32184746 -110.841452  NULL NULL NULL NULL 0
10 | 22 NULL Wilmot/Broadway SWILMOT RD & E BROADWAY BLVD = 32220401 -110.8581 NULL NULL NULL NULL 0
11 ] 23 NULL 5th St/alvemon E 5TH ST &N ALVERNON way 32228973 -110.91003  NULL NULL NULL NULL 0
12 | 25 NULL Downtown Ronstadt Center W RONSTADT TRANSIT CENTER DR 32222563  -110.968047  NULL NULL NULL NULL 0
13 | 28 NULL Downtown Ronstadt Center W RONSTADT TRANSIT CENTER DR 32222511 -110.968283  NULL NULL NULL NULL 0
14 | 23 NULL Bth St/Campbell E BTH ST &N CAMPBELL AVE 32227727 -110.942714  NULL NULL NULL NULL 0
15 | 30 NULL 5th St/Alvemon ESTH ST &N ALVERNON WaY 32228805 -110.809321  NULL NULL NULL NULL 0
16 | 32 NULL Stella/Kolb E STELLARD &S KOLE RD 32184594 -110.840733  NULL NULL NULL NULL 0
17 | 34 NULL Pima College East Campus S FRED ENKE DR & E PCCEAST PL 32166109 -110.815521  NULL NULL NULL NULL 0
(18 | 35 NULL Hartison/Giolf Links S HARRISON RD &E GOLFLINKS RD | 32192592 110789623 NULL  NULL  NULL NULL 0
19 | 36 NULL Speedway/Harrison Park ...~ E SH PARK N RIDE WaAY &N EUCLI..  32.23501 -110.730247  NULL NULL NULL NULL 0
20 | 40 NULL Speedway/Alvernon E SPEEDWAY BLVD & N ALVERNO... 32236315 -110.910143  NULL NULL NULL NULL 0 LI
(d) Stops



4.3Network Construction

(b) Vehicle position table
FIGURE 6 Parsed GTFS real-time data in database

|| headertimestamp tripupdate.timestamp nm schedule | tip.tip_id lup route_id | tip.start_time | tiip.start_date. vehn:l= id | vehicle.label | vehicle.license_plate | stop_sequence stop_id aiiiy o
1 [2014:07.01 00:00:05.000 | 13631231 17.00:00.000 1162912 231000 20140630 218 E] 39.40.41.42.43,44 45 46,47 48,4350 51 52535¢4,..  ORFS(NW).ORPLISW).ORLE(SW)DR11(SW).DRSA(SE)STS... o,nEI
2| 20140701 00:00:05.000 19631231 17:00.00.000 n 1154874 s 230600 20140830 -1 %25 1 43,5051,52,53,54.55,56,57.58.5360,61.626364...  BRMA(SE) BRUE(SE)BRLA(SE) BRKO(SE)BRMO(SELBRPRL.. | 0.0,
3| 20140701 00:00:05000 19631231 170000000 0 1154965 | 8 231800 20040830 5% Bl 50,51.52,53,54)55.56,57,58.59.6061 626364 65....  RTC(DS)6412(5W) BATS(SW) BAIBISW) BA20NW)6622(5... | 0.0
4_ 2014-07-01 00:00:05.000 ~ 1969-12-31 17:00:00.000 0 115283 16 22.48:00 20140830 -1 3011 -1 61,62,63,64,6566,67,68, IN2300WB INCC{NW)INSW(NE ) INSH[NW).IN3220WEB INTI(. 00
L 2014-07-01 00:00:05.000 ~ 1963-12-31 17.00:00.000 0O 1154364 8 22.48:00 20140830 -1 301 A1 58,59,60,61,62,63,64,65 66,67 68, BA34(SW) BA37(NW) BA3T(SW) BA44(NW) BAVE (SW) BAAJ(S. 00,
6| 20140701 00:00:05000  196312:31 170000000 0 1154022 | 4 233000 20040830 3103 1 212223242526.27.28.29.30,31.32.333435.36,..  SPAT(SE).SPCO(SE).SPBLISE) SPSWISE) SPAR(SELSPROL.. 0.0
7| 20140701 00:00:05.000 19631231 170000000 0 1153770 | 3 23300 20040830 3128 1 73747576, PADD(SW) PAPO(SW)PACN(SW) PCCE(ES), 00
8| 20140701 00.00:35.000 19631231 170000000 0 1152912 16 281000 20040830 218 k] 39,40.41.42,43.44.45,46,47 48,4350 51 525354...  ORFSINW).ORPLSW) ORLE(SW).DR11(SW).DRIA(SE)STS... 0.0
(9| 20140701 00:00:35.000 19631231 170000000 0 1154674 | 8 280600 0040630 %25 1 49,50.5152,53,54.55,56,57.58 536061 626364...  BRMA(SE) BRIE(SE) BRLA(SE) BRKO(SEBRMO(SELBRPR(.. | 0.
l 2014-07-01 00:00:35.000 ~ 1969-12-31 17:00:00.000 0 1152836 16 22.48:00 20140630 -1 3011 -1 61,62,63,64,6566,67,68, IN2300WB INCC{NW)INSW(NE ) INSH[NW).IN3220WB INTI(. 00
L 2014-07-01 00:00:35.000 ~ 196312-31 17.00:00.000 0O 1153770 3 22:33.00 20140830 -1 328 -1 73747576, PADO(SW).PAPO(SW).PACN(SW) PCCE(ES). 00,
12| 20140701 00:01:05000 196312:31 170000000 0 116283 16 224800 20140830 1 £ 1 61,62.63,6485.66,67,68, IN2300WB INCCINWINSW(NELINSHINW)IN3220WE INTI[.. 0.0
13 | 20140701 00:00:35.000  196312:31 170000000 0 1154985 | 8 231800 20040830 2% 1 51525354,55,56.57.58. 59 60,61 626364 65.66...  BA12(SW) BATS(SW).BA18SW) BAZDNW)BA22(SW) BA27(S.. | 0.0
14| 20140701 00.00:35.000 19631231 170000000 0 1154022 | 4 233000 20040830 4 3103 1 21.22232425.26.27.28.29.30.31 32.3334,35.36...  SPAT(SE)SPCO(SE).SPBLISE)SPSWISE) SPAR(SELSPROL.. 0.0
15| 20140701 00.01:05.000  196312:31 170000000 0 1152912 16 281000 20040830 =18 Bl 39,40.61.42,43.44.45,46,47 48,4350 51 525354...  ORFSINWI.ORPLSW) ORLE(SW).DR11(5W).DRIA(SE)STS... | 0.0
i 2014-07-01 00:01:05.000  1969-12-31 17:00:00.000 0 1154874 230400 20140630 -1 2525 -1 BRMA(SE) BRJE(SE) BRLA(SE) BRKO(SE).BRMO(SE).BRPRI. 00
l 2014-07-01 00:01:05.000  1969-12-31 17:00:00.000 0 1154365 8 2318:00 20140830 -1 2536 -1 BAT2(SW) BAT5(SW) BAT8(SW) BA20(NW) BA22(SW) BA27(S. 00,
18| 201407.01 00:01:05000 196312:31 170000000 0 1154022 | 4 233000 20140830 1 3108 1 2122.23.24.25.2627,28,29,30.31,32.33,3435,36,..  SPAT(SE).SPCO(SE).SPBLISE) SPSWISE)LSPARISELSPROL.. | 0.0
13| 20140701 00:01:05.000  196312:31 170000000 0 1153770 | 3 223300 20040830 3128 1 73747576, PADD(SW) PAPO(SW)PACN(SW) PCCE(ES), 00
20 | 20140701 00.01:35.000  196312:31 170000000 0 1152912 16 231000 20040830 218 1 4748435051 525354 55,56 57,5859 6061 62...  RTC(165)ALSTINELCHPEINW).CHOCINW MASIINWIMAT7... | 0.0
21 | 20140701 00:0235.000 19631231 170000000 0 15770 3 23300 0040830 A £ 1 7374757, PADO(SW]PAPO(SW) PACN(SWPCCE(ES), 00,
l 2014-07-01 00:03:05.000  1969-12-31 17:00:00.000 0 115283 16 22.48:00 20140630 -1 3011 -1 61,62,63,64,6566,67.68, IN2300WB INCC{NW)INSW(NE ) INSHNW).IN3220WB INTI(. 00,
& 2014-07-01 00:03:05.000  1969-12-31 17:00:00.000 0 1153770 3 22:33.00 20140830 -1 328 -1 73747576, PADO(SW).PAPO(SW).PACN(SW) PCCE(ES). 00,
l 2014-07-01 00:01:35.000 ~ 196312-31 17.00:00.000 0O 1154874 8 230400 20140830 -1 2525 A 49,50,51,52,53,54,55,56,57.58,59,60,61 62,63 64.. BRMA(SE) BRJE(SE) BRLA(SE) BRKO(SE).BRMO(SE).BRPRI. 00,
25 | 20140701 00:01:35.000  196312:31 170000000 0 1154985 | 8 231800 20140830 1 2% 1 515525354,55,56.57. 58,53 60,61 626364 65.66,..  BA12(SW) BATS(SW).6A18SW] BAZDINW) BAZ2(SW) BA27(S... | 0.0
25 | 20140701 00.01:35.000 19631231 170000000 0 115283 16 24800 20040830 301 k] 61626364 65666768, IN2300WB INCCINWILINSWINELINSHINW)IN3220WEINTI(.. | 0.0
27| 20140701 00.01:35.000 19631231 170000000 0 1154022 | 4 233000 0040830 103 1 21.22232425.26.27.28.29.30.31 32.3334,35.36...  SPATISE)SPCO(SE).SPBLISE)SPSWISE) SPAR(SELSPROL.. 0.0,
28 | 20140701 0001:35000 19691231 17.00.00000 0 1577 3 23300 20040830 £ Bl 73747576, PADO(SW]PAPO(SW) PACN(SWPCCE(ES), 00,
T SMANT.M ANM-AR NN 168312.21 170000000 1 1Aty 18 22100 T T —T) a A7 ARLAQS0 51 59 5 54 5SS 7 52 AN 61 67 RTOIAS] A1 GTINE] CHPEIWA CUICIW MASINWMATT 01T
(a) Trip update table
header.timestamp l trip.schedule I trip.trip_id I trip.route_id I trip.start_time: l trip.start_date I position. latitude | position. longitude I position.bearing I position.odometer I position. speed I i’
1| ] 1152912 1 -1 -1 32222934314 110968032837 O 0 0
2 :00:05. 0 1154874 -1 -1 -1 322208518382 110840194702 O 0 0
3 2014-07-01 00:00:05.000 0O 11543965 1 -1 -1 322229652405 110968208313 0 1] 1]
4 2014-07-01 00:00:05.000 0O 1152836 1 1 -1 323375854492 -111.044448853 0 1] 1]
5 2014-07-01 00:00:05.000 0O 11543964 1 1 -1 322724342346 -111.007247925 0 1] 1]
6 2014-07-01 00:00:05.000 0O 1154022 1 -1 -1 32.2360877991 110876296397 O 0 0
7 2014-07-01 00:00:05.000 0O 1153770 -1 -1 -1 321568336487 110907775879 O 0 0
8 2014-07-01 00:00:35.000 O 1152912 1 -1 -1 32222934314 110968032837 O 0 0
9 2014-07-01 00:00:35.000 0O 1154874 -1 -1 -1 322208518382 110840194702 O 0 0
10 | 2014-07-01 00:00:35.000 0O 1154965 -1 -1 -1 322234954834 110968330383 O 0 0
11 2014-07-01 00:00:35.000 0O 1152836 1 -1 -1 323375854492 -111.044448853 0 1] 1]
12 | 2014-.07-01 00:00:35.000 O 1154022 1 1 -1 322360725403 -110.875244141 1] 1] 1]
13 | 2014-07-01 00:00:35.000 O 1153770 1 1 -1 321568336487 110907775879 O 1] 1]
14 | 2014-07-01 00:01:05.000 O 1152912 1 -1 -1 322227973338 110968215342 O 0 0
15 | 2014-07-01 00:01:05.000 O 1154874 -1 -1 -1 322208404541 110831634521 O 0 0
16 | 2014-07-01 00:01:05.000 O 1154965 -1 -1 -1 322234954834 110968330383 O 0 0
17 | 2014-07-01 00:01:05.000 O 1152836 -1 -1 -1 323375778198 -111.046508789 O 0 0
18 | 2014-07-01 00:01:05.000 O 1154022 1 -1 -1 32.2360725403 110875244141 0 0 0
19 | 2014-.07-01 00:01:05.000 O 1153770 1 1 -1 321640930176 -110.920669556 0 1] 1]
20 | 2014-.07-01 00:01:35.000 O 1152912 1 1 -1 322228775024 -110.968238831 0 1] 1]
21 2014-07-01 00:01:35.000 O 1154874 1 -1 -1 322208404541 -110.831634521 0 1] 1]
22 | 2014-07-01 00:01:35.000 O 1154965 -1 -1 -1 322190704346  -110.968635559 O 0 0
23 | 2014-07-01 00:01:35.000 O 1152836 -1 -1 -1 323375778198 -111.046508789 O 0 0
24 | 2014-07-01 00:01:35.000 O 1154022 1 -1 -1 322360725403 110870368358 O 0 0
25 | 2014-07-01 00:01:35.000 O 1153770 -1 -1 -1 321640930176  -110.920669556 O 0 0
ac 2014 N7 N1 NN-N2-NR NNN n 11R201°9 1 1 1 29 20T TIRNM 11N QCOY20021 n n n L]

Multiple transport modes were considered in our intercity passenger traveling problem. To

model this multimodal transport network and optimize route selection according to passenger

preferences, it was helpful to build the network in an efficient way. Different network-building

methods have been studied since multimodal networks can be viewed from many aspects [19].

Networks can be viewed as physical systems and classified as road, rail, water, and air, or they can

be viewed as functional systems, classified into private modes (e.g. foot, bike and car) and public

modes (e.g. bus, train, metro). Two major network structures have been used extensively in
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transportation planning: node-based [20] and link-based [21] networks. Recently, trip-based
network representation was proposed in [22], in this case transit vehicle trips are used as network
edges and transfer stop hierarchy is taken into account. Another lane-based network presented in
[23] could serve as a more realistic platform to provide a geospatial context for traffic simulations
to be performed at the level of individual vehicles. A new super-network platform was constructed
[24], which was an expanded network in which activity links were introduced into the conventional
time-space network.

In our multimodal network, transit buses, walking, and flights were considered within two
cities, Boston and Tucson. In order to fit and make better use of the GTFS data format in our SQL
database (see Section 4.1), individual transit bus networks were established for the two cities
initially, and then these two networks were flattened to integrate walking and transit, and finally
the two networks were connected by the flight network. This network building process was
accomplished using the package ‘NetworkX’ developed for the Python programming language
[25]. Database interaction between SQL and Python can be found in [26] using package ‘pymssql’.
The example Python code is shown below: ‘host’ represents the IP address of the database server,
‘1433’ is the default value of the connection port, ‘database’ is the name used for the database in

database management system.

SQL = pymssql.connect(
host="xxX.XXX.XXX.XXX",
port=1433,
user="xxxx"',
password="xxxx",
database="xxxx"'

)

SQL.cursor()
Figure 7 shows detailed flow diagram of Python + SQL to generate the static multimodal transport
network with corresponding static attributes (taking Tucson for example). Figure 8 shows a query

example in SQL database server.
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pymssql connect

Connection start

2

Cursor execute
'select * from
[SunTran].[dbo].[Suntran_Routes]'

Query all the route

2

Cursor execute
'select * from
[SunTran].[dbo].[Suntran_Trips]

Query all trips for each route

where [route_id]=..."

Cursor execute

U

'select * from
[SunTran].[dbo].[Suntran_Stops]
where [trip_id]=..."

Query all stops for each trip

2

Networkx.MultiDigraph()

[ R I

Build static network

[/ I I

SQL Cursor()

Route short name

Route long name
Dictionary Tucson_route< All trips id

Route type

Route id

o | Trip headsign
Dictionary Tucson_trip { Trip short name

Stop sequence
Stop id

L Stop name
Dictionary Tucson_stop< siop latitude

Stop longitude

Multigraph with multiple links

FIGURE 7 Flow diagram of Python + SQL to generate static multimodal network
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SISELECT TOP 1000 [route_id]

28...master (chen (61))

@ |J ReportServerTempDB ~ [service_id]

5 (J SunTran [trip_id]
@ (3 Database Diagrams ,[trip_headsign]
= [ Tables ,[trip_short_name]

@ [ System Tables
@ (3 FileTables

@ £ dbo.Alert 2014 04

@ 3 dboflight_airline

@ = dbodflight_airport

@ 3 dboflight_route

@ [ dbo.Suntran_Routes
@ 21 dbo.Suntran_Routes_2l
@ [ dbo.Suntran_Shapes
@ = dbo.Suntran_Shapes_2.
@ [ dbo.Suntran_Stop_tim:

. [direction_id]
. [block_id]
. [shape_id]

FROM [SunTran].[dbo].[Suntran_Trips]

select distinct *

100% ~

[E] Resuts | 1) Messages

@ 3 dbo.Suntran_Stops woute_id |sevice id |tipd | tip_headsign

® O dboSuntran Stops 20" | 25 11617 2 63541 | DOWNTOWN

& O dbo.Suntran_Trips % 1617 2 1168945  DOWNTOWN

@ @ dbo.Suntran_Trips_201 27 1617 2 1168346  DOWNTOWN

@ O dboTripUpdate 20141 | 53 11517 2 1168947 DOWNTOWN

@ O dooTripUpdate 20141 |50 11er7 2 Ll

@ 3 dbo-TripUpdate 20141 0 1617 2 1168349 DOWNTOWN
=proimmsirll ERECINE 1163350 TOHONO CENTER
@ O dbo.TripUpdate 20141 | 32 11617 3 1168951  TOHONO CENTER
® O dboTripUpdate2ora || B 16173 1168952 TOHONO CENTER
@ O dbo.TripUpdate_2014_ ¥ me17 3 1168953  TOHONO CENTER
® 03 dbo TripUpdate 2014 B 1617 3 1168954 TOHONO CENTER

o = > 1 | ———

Read

from [SunTran].[dbo].[Suntran_Trips] where |[[route_id] - '

tip_short_name  direction_id  block_id

NULL 1 381127
NULL 1 381125
NULL 1 381126
NULL 1 381125
NULL 1 381125
NULL 1 381126
NULL 0 381128
NULL 0 381129
NULL 0 381130
NULL 0 381128
NULL 0 381128

128.196.93.142 (11.0 SP1) | chen (59) = master | 00:00:00 ' 190 rows

ey 2t e o< I Y T

Script for SelectTopNRows command from SSMS

X
[BNoae |50
40 Current connection parameters -
=

shape_id
35917
35917
35917
35917
35917
35917
35916
35916
35916
35916
35916

4
Connection failure
Elapsed time
Finish time

Name

Rows returned
Start time 8
State Open
Connection name 122.196.93.142 (chen)

Connection elaps:

Connection finish
Connection rows
Connection start t 8
Connection state O
Display name 12
Login name ch
Server name 12
Serverversion 11
Session Tracing ID

SPID 59

Name
The name of the connection.

v

Ln12 Col 62 Ch 62 INS

FIGURE 8 Example in SQL to query all the information for route 11617

After separate transport networks for the two cities were built, the overall intercity network

was connected via airports and constrained by the flight network. Land-based travel modes

between the two cities were considered impractical for most travelers. For a practical trip between

Tucson and Boston, the most unalterable constraint is the flight network, which has a strong time-

property. Therefore, arriving with high reliability well before the flight takeoff time, which would

be a parameter input by the user, was critical in trip planning.
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It should be noted that for this established directed graph (Figure 9), only static attributes were
assigned for nodes (e.g. identification number, name, coordinates, scheduled departure, and arrival
time) and links (e.g. parent nodes, succeeding nodes, and scheduled travel time for this link).
However, for the real-time optimization, real-time information about traffic interruption, possible
delay, and all other unexpected alterations needed to be accessible. Accordingly, partial or entire
networks needed to be updated once the real-time feedback information had been imported into
the database. This updating process was completed by creating event alerts in the database to
update automatically.

Figure 9 demonstrates a simple transit network consisting of three routes and 13 stops. Multiple
routes may travel on the same link and pass through the same stops. The link travel time and link

travel time reliability are estimated by specific routes and links. For example, westbound routes A
and C are designed to travel on a link consisting of Stops 1 and 2. TT;5*" and TTR}%"" represent
the travel time and travel time reliability on the first link, route A, given a TOD and w, respectively.
TES*" and TTREM™ represent the travel time and corresponding travel time reliability on the

same link, route C. The transit stop information was extracted from the GTFS static data and the
links were constructed using two consecutive stops on a specific route. The link travel times and
link travel time reliability were estimated using the GTFS real-time data. Then, a network was
completed using the transit stops, constructed links, and corresponding link travel time and travel

time reliability.

(TTS TTR'"

1% link, Route A

tod ,w tod ,w.

(TTss -TTR:s)

1" link, Route C

TTE TIRE
d,w tod ,w.
1% link, Route B 8" link, RoutecjD fod, ™Y |Legend

tozli w " tod ,w- th 1. (TTC,8 ’TTRC,S ) €
(TT g ’TTR ’ ) 5" link, Route A ,—— Route A
Bl 81 ¥ RouteB
» N Route C
Westbound ‘ ‘ Eastbound Roadway
O Bus Stop

FIGURE 9 Demonstration of transit network construction
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4.4Chance Constrained Decision Model

Due to the complexity and randomness of real-world situations, it is difficult to determine
travel time explicitly in a large-scale transit network. Additionally, walking is always involved in
public transit and more complexity is added when taking into account the uncertainty of transfer
time and waiting time. For our study, the airport was set as the destination considering that travelers
are concerned about on-time arrival confidence level because of the significant inconvenience of
missing a flight. Finding an optimal path to guarantee arriving the airport on time at high likelihood
was a priori preference. Practically, in the stochastic transit network, the route with lowest travel
time might not be the best choice for passengers to catch the flight during specific hours on specific
day.

For this kind of problem, chance constrained programming was developed as a means of
describing constraints in mathematical programming models in the form of probability levels of
attainment. Consideration of chance constraints allows decision makers to consider mathematical
programming objective in terms of the probability of their attainment [27]. In this research, the
uncertainties in travel time were considered and a deterministic model was extended to be a
stochastic model with some chance constraints to guarantee the probability of on-time arrival. For
clarity, the travel time between two adjacent stops by bus is termed as link travel time while travel
time from the origin to the destination is referred to as path travel time. Accordingly, link travel
time is the element for path travel time.

Considering a stochastic and time-dependent network, total travel time is the objective function
and mainly consists of link travel time, transfer time (same as waiting time), and walking time.
However, for link travel time, transportation literature does not provide a universally valid model
for bus movements in an urban environment since they are strongly affected by vehicular and
passenger traffic conditions, road organization, traffic signal control management, company
policies, etc. [28]. Therefore, using nonparametric probability distribution estimation methods
could provide greater flexibility and increased fidelity with fewer assumptions. Details about
estimated travel time distribution can be found in our previous research [18]. Specific calculation
of mean value of link travel time is shown in the following data preparation section. All
corresponding assumptions made for this study and the notations (Table 1) used for the model are

summarized below.
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1. The modes studied here are transit bus and walking, and transfer mode is used as dummy
mode for modeling convenience. Walking was not considered at original stops, which
means walking was not chosen at the departure stop.

2. Link travel time, transfer time, and walking time between any consecutive nodes were all
treated as random variables. The dependency was not considered.

3. Bus transfer time was assumed to follow uniform distribution, and the lower and upper
limit were determined by scheduled bus timetable.

4. Walking time was computed based on distance between two nodes and walking speed
which was assumed to follow a normal distribution N (i, o). Reasonable values of y and
o are 1.35m/s and 0.2m/s [29]. Since the first and second moment of reciprocal normal
distribution does not exist, the mean of walking time was estimated by distance/u, and

the standard deviation of walking time was estimated by the estimator distance *

(————— ———)/1.34898 [30].

n—0.67449+0 u+0.67449+0

TABLE 1 All notations used in the model

Notations Description

N Set of nodes in the transit network, with index i, j
0 Departure node

D Destination node
A
M

Set of links in the multi-modal network
Set of travel modes in the multi-modal network, with index m

Etijm Mean value of travel time for link (7, /) under mode m
SD¢ijm Standard deviation of travel time for link (7, /) under mode m
AT User-defined anticipated arrival time

CcT Current time

c User-defined on-time arrival confidence level

Zy Quantile of normal distribution at confidence level c

Xijm Binary variable, selecting mode m for link (i, j) or not

For this stochastic network, the objective of minimizing expected total travel time can be
expressed as
min ET = Z xiijt,ijm (3)
(i,j)eAmeM
For the constraints, the basic flow balance constraints should be included to generate feasible path

which is given below.

24



1, ifi=0
Z xijm - Z in = O,lfl #O0orD (4)

(i,))EA,MEM (j,i)EAmEM -1, ifi=D

The chance constraint is introduced here to guarantee the on-time arrival probability which

should be greater than pre-defined confidence level c.
P{ET < (AT —CT)} > ¢ (5)

Travel time uncertainties are typically represented by random distributions. If the travel time
between any consecutive stops are independently distributed, the path travel time follows a normal
distribution approximately following the central limit theorem. Based on the central limit theorem
and independence assumption, the mean and variance values of all the arcs can be added together
as mean and variance value of the path. Hence, the chance constraint can be formed in the

following equivalent deterministic constraints according to [31].

ET < Z XiimEeiim — 2 Z X;im(SD¢ iim)?
ijmEtijm r\/ (L))eAmem l]m( t,um) (6)

(i,j)eAmeM

Xijm € {0,1} 7
Here, different random distributions could be included in this model, also it is more easily
implemented based on existing efficient shortest path algorithms.

4.5Solution Method

Up to this point, the model with chance constraints had been transformed to a classic network
model which is similar to a shortest path problem with an extra travel time upper limit constraint.
Numerous algorithms have been developed for this problem category in static and stochastic
networks. Classic shortest path algorithms such as Dijkstra, Bellman, and Dreyfus focus on
networks with deterministic arc weights. For time-dependent networks, algorithms including exact
or heuristic algorithms were also proposed recently [32,33]. All of these algorithms seek to obtain
an optimum or near optimum path which limits alternative options.

For practical applications, some paths have the same objective value and satisfy the confidence
level requirement, therefore several possible optimal options should be ranked for passengers to
choose from based on their own preferences. Obtaining several paths in increasing order of length
is usually referred as the k-shortest paths problem which is a generalization of the shortest path
problem [34]. The k-shortest path problem was originally examined by Hoffman and Pavley [35],

but nearly all early attempts to solve it led to exponential time algorithms [34]. The best known
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implementation for this algorithm was proposed by Yen [36] using modern data structures, in
which O(kn(m + nlog(n))) limits the worst case complexity. This algorithm essentially
performs O(n) single-source shortest path computations for each output path. Based on these
considerations, the framework of the k-shortest path algorithm was used to conduct our
experiments. In the repeated £ iterations of the algorithm, the feasibility of constraints [4] needed

to be checked; the solution path would not be stored if the feasibility was not satisfied.
4.6User Interface Prototype
The graphic user interface (GUI) in this section was developed based on the Python + Eclipse

environment. Several GUI packages were available in the Python library, for instance, TklInter,
Traits/TraitsUI, and gui2py. For this project, WxPython was used [37]. Tucson and Boston were
considered since their public transit data formats were very similar and easily integrated together.

For intercity travel from Tucson to Boston, travelers begin with a departure bus stop in Tucson
(generally near their home) and terminate at a bus stop in Boston (generally near their final
destination). Normally, flight tickets will be booked well in advance of the beginning of their trip.
There might be some connections in their flight, however, the departure time from home and arrive

time at destination are constrained by the takeoff time of their flight from Tucson and landing time

Option 2
Anticipated Time:
Path Description
Option 3
Anticipated Time:
Path Description
Option 4
Anticipated Time:
Path Description

Option 5

Anticipated Time:
Calculat L
cuate Path Description

in Boston.

Display in Google Earth

FIGURE 10 Prototype of graphic user interface for intercity trip support

26



Therefore, four inputs were gathered from users: two flight numbers (taking off from Tucson
and landing at Boston) and two bus stops, as shown in Figure 10. The ‘Calculate’ button was used
to obtain at most the five best options based on anticipated travel time. ‘Display in Google Earth’
created a kml file [38,39] of the chosen path allowing users to visualize it in Google Earth. The

‘Clear’ button cleared all the input and path results.
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5. DISCUSSION OF RESULTS

5.1System Demonstration

Case Study I: Suppose Delta Airlines has been chosen by the traveler, with the flight
information shown in Figure 11. Flight DL 1345 takes off at 6:15am (not a peak hour) from the
Tucson International Airport and Flight DL 1500 will land at 4:42pm (around peak hour) at Boston

Logan International Airport, with a connection in Atlanta.

A. D E LTA f SHOP *  TRAVELINGWITHUS *  SKYMILES® ~ m Q v o
x
BOOK A TRIP @ &350k

Wednesday, September 02, 2015 | 1 Passenger
Mooy searc —

One Way : TUS » BOS

FROM Tucson, AZ (TUS) to Boston, MA (BOS)

TO
Total price is per passenger and includes taxes and fees. Additional baggage fees may apply

DATES SORVEY MAIN CABIN

VIEW DELTA PRODUCT COMPARISON CHART

PASSENGERS LOWEST FARE FASTEST DL 1345, DL 1500 Main Cabin (U)

6: 1 5 m ” 4:42 PM 7h 27m
Advanced Search
FAexible Dates m m m 1sTOP $2 9 1 " $6 0 3 ;

1th7m

NARROW RESULTS
SELECT SELECT
RESET ALL

STOPS 4 @,‘Psp 2 left at this price
a4 7

1sToP DL 1240, DL 903 Main Cabin (U) Multiple Cabins

MULTI-STOP
- 1:00. » 12:27.. 8h 27m

CONNECTION AIRPORTS THU 03 SEP

Atlanta, GA (ATL) [ Tus | [ am_ | =3 1sTOP $29 1 N $603 ;

FIGURE 11 Flight information from Delta Airline’s website
After inputting the flight information in the user interface, the recommended path and
corresponding travel time is given in Figure 12. An additional time of 25 minutes would be needed
to guarantee on-time arrive at Tucson International Airport if the traveler boarded the flight at 6
am. After the path results are calculated, Google Earth can be used to display the results. ‘“Tucson,
Option 1’ and ‘Boston, Option 1’ are displayed respectively in Figure 13 and Figure 14. The
marker ‘S’ and ‘D’ in Figure 13 and Figure 14 represent the start stop and ending stops. Walking

mode is indicated by two ‘W’s.
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Tucson,Option 1

Walking Time (min): 0.6
Path Description:1
42==>118(route 25))

Tucson,Option 2

Walking Time (min): 0.6

Tucson,Option 3

Walking Time (min): 1.1
Path Description:100==

25)
Tucson,Option 4

Walking Time (min): 1.5
Path Description:100==

Display in Google Earth

Tucson,Option 5

Walking Time (min): 1.5
Path Description:100==

25)

>118(route 25)

>14202(route 9);

14202-->14204(walking); 14204-->42(walking); 42==

>14202(route 9);

14202-->14204(walking); 14204-->129(walking);
129-->42(walking), 42==

>118(route 25)

>14202(route 9);

14202-->14203(walking); 14203-->42(walking); 42==

Anticipated Time (min): 82.4 (Average) + 26.8 (Addtional)

==>14202(route 9); 14202-->42(walking);

Anticipated Time (min): 82.4 (Average) + 26.8 (Addtional)

Path Description:100==>14202(route 9); 14202-->129(walking);
129-->42(walking); 42==

Anticipated Time (min): 82.9 (Average) + 26.9 (Addtional)

>118(route

Anticipated Time (min): 83.2 (Average) + 26.9 (Addtional)

Anticipated Time (min): 83.3 (Average) + 26.9 (Addtional)

>118(route

Boston,Option 1
Anticipated Time (min): 86.5 (Average)

Walking Time (min): 5

Path Description:Logan-B==>Logan-Subway(route Logan-22);
Logan-Subway-->70047(walking); 70047==>70041(route 946);
70041-->49703(walking); 49703==>953(route 57); 953-->70144(walking)
Boston,Option 2

Anticipated Time(min): 86.3 (Average)

Walking Time (min): 5

Path Description:Logan-B==>Logan-Subway(route Logan-55);
Logan-Subway-->70047(walking); 70047==>70041(route 946);
70041-->49703(walking); 49703==>953(route 57); 953-->70144(walking)
Boston,Option 3

Anticipated Time(min): 90.2 (Average)

Walking Time (min): 5

Path Description:Logan-B==>Logan-Subway(route Logan-33);
Logan-Subway-->70047(walking); 70047==>70041(route 946);
70041-->49703(walking); 49703==>953(route 57); 953-->70144(walking)

FIGURE 12 Optimized results for case I

uc\ d/, 121’1 5161
; Park/i8thiStEt
/R Pafk25nwst
Park Silvernlake :

ark/\Vyoming

Laosiransiticenter,

1A

Tour Guide

S € npbc\

FIGURE 13 Path displayed in Google Earth for case I, Tucson

29



~ o O Py ¢
vAIrport - Inbound(70047) & ot :

3 N7 T e
ort’Subway, Statlon 3 m‘%‘
181 lifgan Alrport Termmal B

0 Maverlck

Click to move around 5} @
¥

1br|dgewSt (@) CentenPIaza Go '.
5 State Street - to

‘ J,ameSrAve (@) Claren/don/St
aSamt James Ave @:Dartmouth St

hhimblezlsland ™
“Halftide!Rock"

&
80 8
8 (y I c.
(.Ooq ¢ edfts
\ o

42°21'00.10{N 71°03]0324" W. elev. 23 ft “eye alt 39439 ft

FIGURE 14 Path displayed in Google Earth for Case I, Boston

Case Study II: In case II, American Airlines is chosen (Figure 15), and the takeoff time is

around the traffic peak hour of 5 pm and landing time is 10:29 am the next day in Boston. The

optimized results and displayed path are shown in Figure 16 and Figure 17.

Average Price per Person - 621.20 USD

Price and Tax Information

Fare Alert: Nonrefundable fare. Change fee associated with fare.
Flight Alert: Retum sirport different than originating sirport.
- o A Y
- Flight| D€parting Ariving Aircraft s Travel
arrier - - T Cabin Flight Meals Ti
City Date & Time|City Date & Time| 'YPE Mil ime
AN
L
AMERICAN AIRLINES 5388 TUS Sep 08, 2015 [LAX Sep 08, 2015 CRJ Economy 451 NA 1hr
QOPERATED BY SKYWEST Tucson 05:37 PM Los Angeles|07:15 PM View Seats 38 min
AIRLINES AS AMERICAN
EAGLE
\\
' LAX Sep 08, 2015 [PHL Sep 10, 2015 Food For | S5hr
AMERICAN AIRLINES 650 h . ) b 321 Economy .
OPERATED BY US Los Angeles|10:10 PM Philadelphis [ 05:29 AM Purchase |19 min
AIRWAYS
Alert: Overnight flight or connection.
\K
- PHL Sep 10, 2015 |[BOS Sep 10, 2015 1hr
AMERICAN AIRLINES 1863 |, . . h K EQ0 | Economy N/A .
OPERATED BY US Philadelphis | 09:15 AM Boston 10:20 AM 14 min
AIRWAYS

FIGURE 15 Flight information from American Airline’s website
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Display in Google Earth

e

Tour Guide

Tucson,Option 1
Anticipated Time (min): 91.2

Boston,Option 1

ge) + 29.5 (Addtional)

Walking Time (min): 11.6

Path Description:100==>11736(route 9);
11736-->13481(walking); 13481-->10862(walking),
10862==>118(route 25))

Tucson,Option 2

Anticipated Time (min): 91.5 (Average) + 30.6 (Addtional)
Walking Time (min): 11.6

Path Description:100==>11851(route 9);
11851-->10862(walking); 10862==>118(route 25)
Tucson,Option 3

Anticipated Time (min): 90.5 (Average) + 33.1 (Addtional)
Walking Time (min): 0.6

Path Description:100==>14202(route 9); 14202-->42(walking);
42==>118(route 25)

Tucson,Option 4

Anticipated Time (min): 90.5 (Average) + 33.1 (Addtional)
Walking Time (min): 0.6

Path Description:100==>14202(route 9); 14202-->129(walking);
129-->42(walking), 42==>118(route 25)

Tucson,Option 5

Anticipated Time (min): 91.0 (Average) + 33.1 (Addtional)
Walking Time (min): 1.1

Path Description:100==>14202(route 9);
14202-->14204(walking); 14204-->42(walking); 42==>118(route
25)

icipated Time (min): 78.4 (Average)
Walking Time (min): 5
Path Description:Logan-B==>Logan-Subway(route Logan-22);
Logan-Subway-->70047(walking); 70047==>70041(route 946);
70041-->49703(walking); 49703==>953(route 57); 953-->70144(walking)
Boston,Option 2
Anticipated Time(min): 78.4 (Average)
Walking Time (min): 5
Path Description:Logan-B==>Logan-Subway(route Logan-55);
Logan-Subway-->70047(walking); 70047==>70041(route 946);
70041-->49703(walking); 49703==>953(route 57); 953-->70144(walking)
Boston,Option 3
Anticipated Time(min): 80.1 (Average)
Walking Time (min): 5
Path Description:Logan-B==>Logan-Subway(route Logan-33);
Logan-Subway-->70047(walking); 70047==>70041(route 946);
70041-->49703(walking); 49703==>953(route 57); 953-->70144(walking)

FIGURE 16 Optimized results for case 11
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Y
- :
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FIGURE 17 Path displayed in Google Earth for case II, Tucson
5.2Sensitivity Analysis
Based on the abovementioned data and the approaches for network construction, the transit
network in the Tucson area was constructed for planning travelers’ trips. The total transit bus
network consisted of approximately 2,332 bus stops and 3,529 links. Two modes were primarily

considered in the network: walking and transit buses. Three groups of experiments were created
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to demonstrate the effects of transit service uncertainty on path choices. These three groups of
experiments focused on the local portion of the Tucson to Boston trip, with the Tucson
International Airport as the trip destination.

Experiment I - Effects of Chance Constraint on Path Choice

This group of experiments was designed to investigate the effects of a chance constraint on
path choice. The departure time was selected as 5 pm on a weekday, when traffic usually suffered
from recurrent congestion. The confidence level of the chance constraint was set at 99.5%. Four
scenarios were created by selecting two origins (including the University of Arizona mall bus stop
(Stop 100) and Kain/Kimberly PI bus stop (Stop 13912)) and whether or not the chance constraint
was considered.

e Scenario 1a; origin: Stop 100; do not consider chance constraint;

e Scenario 1b; origin: Stop 100; consider chance constraint;

¢ Scenario 2a; origin: Stop 13912; do not consider chance constraint;

e Scenario 2b; origin: Stop 13912; consider chance constraint;

The details of the results are listed in Table 2, and several findings are summarized below.

TABLE 2 Results comparisons between with and without chance constraints

Departure Consider Optimal Choose Total walk Optimal path
Stop chance travel time walking time
constraint (minutes) (minutes)
100 No 90.55 Once 0.6 100 Route 9 14202 Walking 42 Route 25 118
i Route 9 Walki
Yes 120.7 Twice 11.6 100 ~2¥7 11736 29 13481
Walking Route 25
—> 10862 —— 118
i Route 17 Walki
13912 No 151.5 Twice 1.4 13912 RO LT 4o WG L o911
Route 6 Walking Route 25
2707 14295 —— 118
: i
Yes 203.6 Twice 1.8 13912 Route 17 12096 Walking 13747
Route 19 Walking Route 25

—> 14206 —— 42— 118

1) Both scenarios suggested that the optimal travel times became higher when the chance

constraint was considered.

2) Walking was preferred in Scenario 1b because walking was more reliable than taking and
waiting for buses. Both Routes 9 and 25 were chosen in Scenario 1. The major difference between
Scenarios la and 1b was the mode selection to reach Stop 10862. Taking buses was chosen in
Scenario 1a; while walking to the stop was chosen in Scenario 1b. The travel time of taking buses
was usually shorter than walking time. However, congested traffic conditions may lead to less

predictable and reliable bus arrival. The selection of walking may become an alternative to avoid
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traffic congestion and ensure on-time arrival. Thus, walking became the optimal choice when
considering chance constraints. The optimal path chosen for Stop 100 in scenario 1a and scenario
1b is shown in Figure 18 (left).

3) More reliable paths were chosen in Scenario 2. The differences of optimal travel times and
walking time between Scenario 2a and Scenario 2b were minor (approximately 10 minutes and 1
minute, respectively). Route 6 chosen in Scenario 2a was planned on a busy roadway; whereas,
Route 19 in Scenario 2b was planned on a roadway with relatively light traffic. Although the
optimal travel time of Scenario 2a was slightly smaller than that of Scenario 2b, Scenario 2b could
be a better path choice when considering a chance constraint with higher on-time arrival
confidence level. The optimal path chosen for Stop 13912 in Scenario 2a and Scenario 2b is shown

in Figure 18 (right).

—— —— ‘\\ ——— ——— ! —;
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i 1 = [k
L\j ? 1N
i
| i
Scenario 1 Scenario 2

FIGURE 18 Optimal paths with and without chance constraints
Experiment II - Effects of Confidence Levels on Path Choice

The second group of experiments was designed to investigate the effects of different on-time
arrival confidence levels on path choice. The destination was again the Tucson International
Airport. Three origins were selected, including the UA mall bus stop (Stop 100), Kain/Kimberly
PI bus stop (Stop 13912), and 1st Av/Rillito Park (Stop 12900). Since traffic conditions greatly
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affect transit reliability and traffic congestion varied significantly between 6 am and 5 pm, transit
service was considered reliable at 6 am and less reliable at 5 pm. Thus, six scenarios were created
based on the three origins and these two TODs. Seven levels of on-time arrival confidence levels
were tested for each scenario.

* Scenario 1a; origin: Stop 100; departure time: 6 am on weekday;

* Scenario 1b; origin: Stop 100; departure time: 5 pm on weekday;

* Scenario 2a; origin: Stop 13912; departure time: 6 am on weekday;

* Scenario 2b; origin: Stop 13912; departure time: 5 pm on weekday;

* Scenario 3a; origin: Stop 12900; departure time: 6 am on weekday;

* Scenario 3b; origin: Stop 12900; departure time: 5 pm on weekday;

Figure 19 and Table 3 show the optimal anticipated travel times for each scenario, and several
findings are summarized below.

1) The optimal anticipated travel times increased with the increase in on-time arrival
confidence level. For example, In Scenario 1, the optimal anticipated travel time was 82.45
minutes when a chance constraint was not considered. The optimal anticipated travel time
increased to 109.3 minutes when the on-time arrival confidence level was set at 99.5%. The same
trend can be observed in all of the scenarios. The trend was intuitive: for a fixed takeoff time, the
more planning time, the higher the on-time arrival confidence level.

2) The optimal anticipated travel time at a given on-time arrival confidence level was greater
at a departure time of 5 pm at 6 am. For example, without considering confidence level, the optimal
anticipated travel times were 82.45 and 90.55 minutes, respectively. Generally, transit service was
more reliable in the early morning than during peak hours.

3) Approximately 30% additional planning time could ensure on-time arrival at a relatively
higher confidence level. Table 3 lists the optimal anticipated travel times when on-time arrival
confidence level was not considered and at the 99.5% level for the six scenarios. Although the
difference in time varied, the percentage differences suggested that trips could be on time at a
reliability level 99.5% if 30% additional planning time was added as buffer time.

TABLE 3 Basic statistics

Optimal anticipated travel time Difference
(minutes)
No Chance 99.5% On-time Minutes Percentage (%)
Constraint Arrival (Co.995 — base)
(base) Confidence Level
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C0.995 ((60.995 -

base)/ base)
Scenario la 82.45 109.3 26.85 32.57%
Scenario 1b 90.55 120.7 30.15 33.30%
Scenario 2a 129.9 171.6 41.7 32.10%
Scenario 2b 151.5 203.6 52.1 34.39%
Scenario 3a 109.1 142.9 33.8 30.98%
Scenario 3b 122.7 163.1 40.4 32.93%
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FIGURE 19 Optimal anticipated travel time vs. predefined confidence level
Experiment III - Weekend vs. Weekday

The third group of experiments was designed to investigate the optimal anticipated travel time
and path choice on weekends and weekdays. Due to the light traffic on weekends, the transit
service was presumed to be reliable and similar to weekday early morning service. However,
Figure 19 shows that significant differences existed between the optimal anticipated travel time
for 6 am on weekdays and 10 am on weekends. The major difference between the weekday
timetable and the weekend timetable was the bus time headway. The time headway was typically
set to be 10 or 15 minutes on weekdays; while it was as much as 60 minutes on weekends. Larger
time headway resulted in longer waiting time at bus stops, and therefore the optimal anticipated

travel time increased.
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6. CONCLUSIONS

Transit systems are not thoroughly utilized in the U.S. Previous studies have shown that low

fares and easily accessible transit information can convince increasing numbers of travelers to

choose transit. With new technologies emerging, the ease of tracking and collecting transit fleet

information in real-time helps improve both transit operations and real-time transit information

quality. To further encourage travelers to take transit, an efficient decision tool would help traveler

plan transit trips. In this study, a data-driven decision framework for intermodal trip planning was

proposed and implemented. The advantages of the proposed framework are highlighted below:

Both travel time and travel time reliability were considered in the system when planning
intermodal travel. Travelers can be provided with two important transit measures,
anticipated travel times and on-time arrival confidence levels to better plan their trips.
The two transit measures were connected using a chance constrained decision model to
obtain travel paths under different uncertainties. The chance constraint was transformed
into an equivalent deterministic constraint based on the approximate normal distribution
property of the path. Different random distributions could be included in the model and it’s
more easily implemented based on existing efficient shortest path algorithms.

Walking mode was considered when transit passengers needed to transfer. Incorporating
the walking mode into the system gave passengers more options regarding trip planning

and helped passengers plan more reliable trips.

GTEFS static and GTFS real-time data were collected and used for path optimization in Tucson,

AZ and Boston, MA. Both data sets were utilized to estimate link travel time and travel time

reliability in the constructed transit network. Three experiments under several different scenarios

were conducted to study transit on-time arrival. The results of the three experiments suggested that:

Optimal anticipated travel time increased with increasing on-time arrival confidence level.
Essentially, more reliable planned transit paths usually involve longer anticipated travel
times. As an example, approximately 30% additional time serves as a reference for
allocating buffer time to ensure a high on-time arrival confidence level to the Tucson
International Airport.

It was found that walking was preferred instead of taking a transit detour. This is because
the walking mode had relatively high reliability. The chance constrained decision model

gave more weights to more reliable modes.
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* Given different confidence level, different additional time are suggested as the buffer time

to guarantee a higher on-time arrival confidence level during different traffic hours.
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